

An infrared spectroscopic approach towards understanding the orientation of dangling OH bonds

Experimental Results

Ultra-high vacuum chamber, He cryostat (4 K),

Apparatus in the Utokyo

FT-IR, He-refrigerator etc...

314 MLs 627MLs 1254MLs Monolayer(ML) 1 ML = 0.386 nm

Both IP and OP spectrum are almost the same at 10K **Isotropic property (random)**

• Only the OP spectrum at 90K has strong peak at 3698cm⁻¹ and the band strength is almost constant

Anisotropic property (there is some kind of order)

ullet The value of A_{OP} at 90K has no dependency on film thickness

Dangling OH bonds on outermost surface Interesting discovery!

[9] Estimation of the orientation angle

 $R = \left(\gamma \cos^2 \phi_1 + \sin^2 \phi \left(\sin^2 \theta \tan^2 \theta + \cos^2 \theta\right) \sin^2 \phi_1 \tan^2 \theta\right)$

 γ : polarization strength ration of ${\bf s}$ polarization and ${\bf p}$ polarization on background

 $\therefore \begin{pmatrix} s_{IP} \\ s_{OP} \end{pmatrix} = (R^T R)^{-1} R^T S \quad \Rightarrow \quad \mathbf{A}_{IP} = -\log \left(\frac{\mathbf{s}_{IP}^S}{\mathbf{s}^B} \right)$

least squares method

When $A_{IP} = A_{OP}$,

The same to the magic angle $\alpha = \arctan \sqrt{2} \approx 54.74^{\circ}$

 s^s : sample spectrum s^B : background spectrum

[11] mage of 2-coordinated and 3-coordinated dangling OH bonds

Buch et al., J. Chem. Phys. 1991, 94, 4091-4092

[10] Temperature dependence on orientation angle

Itoh et al., J. Phys. Chem. A 2009, 113, 7810.

Shioya et al, J. Phy. Chem. A 2019, 123, 7177-7183

Hama et al, J. Phy. Chem . Lett. 2020, 11, 7857-7866

Wavenumber

Hasegawa and Shioya, Bull. Chem. Soc. Jpn. 2020, 93, 1127.

LO Function

Convergence in magic angle!

Conclusion and discussion

Dangling OH bonds have a local order at a specific temperature(such as 90)!

[5] Si-substrate

 $40 \times 40 \times 1$ mm (111)

- Only the 3-coordinated dangling OH bonds exist at 90K
- This might reflect the surface structure of ASW
- The value of A_{OP} at 90K is almost constant
 - Is the outermost surface of ASW flat and dense?

Why do the 2-coordinated dangling OH bonds disappear at 90K?

One of the example of ASW structure we could deduce dense amorphous ice porous amorphous ice