

Experimental measurement of the absorption cross section of dangling OH bonds in water ice

T. Hama, T. Nagasawa, T. Hasegawa, and N. Numadate, Komaba Inst. Sci., UTokyo.

Introduction: Dangling-OH bonds in water

Conclusions: Band strengths for water

0.06	hormal-incidence H_2O is the most abundant solid of interstellar clouds.		solid of interstellar clouds.		Band strength [cm molecule ⁻¹]
0.05		dH dH IR sne	ctrum of amorphous water at 10 K	Species	(wavenumber range)
		$2 \qquad 3 \qquad \rightarrow We$	ak dangling-OH features at 3696 and 3720 cm ⁻¹	Three-coordinated dangling OH at 90 K	$1.4 \pm 0.3 \times 10^{-17}$
0.04		3720 $3698 \rightarrow$ Free	OH-stretching of 3-, and 2-coordinated molecules	(This study)	(3710–3680)
orbance 0.03	$H H \rightarrow Reflection H$		ect the porosity of ice and serve as catalytic sites for	Dangling OH (Calculation)	1.2 × 10 ⁻¹⁷
Abs		= H $=$ Q H $=$ Q H $=$ Q H H $=$ Q H		(Maté et al. 2021)	(3700–3640)
0.02			The absorption cross section of	Amorphous water at 80 K	2.9 × 10 ⁻¹⁶
0.01			dangling OH bonds remains	(Mastrapa et al. 2009)	(4320–2956)
			unknown (as explained below).	Crystalline ice at 267–273 K	2.3 × 10 ⁻¹⁶
0.00 3	800 3600 3400 3200 3000 28			(Schaaf & Williams 1973)	(3900–2700)
0.0055 Dangling-OH bands 0.0050 2-coordinated		4-coordinated	Quantification of dangling OH bonds is not possible from IR spectra of ice.	H_2O monomer in solid O_2 at 10 K	3.3 × 10 ^{−18}
				(Ehrenfreund et al. 1996)	(3732)

Infrared multiple-angle incidence resolution spectrometry (IR-MAIRS) [by Prof. T. Hasegawa (Kyoto Univ.)]

IR-MAIRS combines oblique incidence transmission measurements and multivariate analysis to retrieve both pure IP (k_{2xv}) and OP (k_{2z}) spectra Originally developed for quantitative molecular orientation analysis of organic thin films. Ref: Hasegawa and Shioya, Bull. Chem. Soc. Jpn. (2020) 93, 1127.

(1) Seven oblique incidence transmission measurements were taken at $\theta = 45^{\circ}$ at different polarization angles from $\phi = 0^{\circ}$ (s-pol.) to 90° (p-pol.) in 15° steps.

These spectra ($\mathbf{s}_{obs, 1-7}$) are expressed as a linear combination of the IP (\mathbf{s}_{IP}) and OP (\mathbf{s}_{OP}) components

 $s_{obs,1} = r_{IP,1} s_{IP} + r_{OP,1} s_{OP} + u_1 (s-pol.)$

 $S_{obs,2} = r_{IP,2} S_{IP} + r_{OP,2} S_{OP} + U_2$

 $S_{obs,3} = r_{IP,3} S_{IP} + r_{OP,3} S_{OP} + U_3$

 $s_{obs,4} = r_{IP,4} s_{IP} + r_{OP,4} s_{OP} + u_4$

 $S_{obs,5} = r_{IP,5} S_{IP} + r_{OP,5} S_{OP} + U_5$

 $S_{obs,6} = r_{IP,6} S_{IP} + r_{OP,6} S_{OP} + U_6$

 $s_{obs,7} = r_{IP,7} s_{IP} + r_{OP,7} s_{OP} + u_7 (p-pol.)$

(2) Seven single-beam spectra, $s_{obs,j}$, forms the matrix, S. The linear combination part can be tied up using the weighting matrix **R** for $r_{\text{IP},j}$ and $r_{\text{OP},j}$ (classical least-squares (CLS) regression).

 $\boldsymbol{S} = \begin{pmatrix} \boldsymbol{s}_{\text{obs},2} \\ \vdots \\ \boldsymbol{s}_{\text{obs},7} \end{pmatrix} = \begin{pmatrix} \boldsymbol{r}_{\text{IP},2} & \boldsymbol{r}_{\text{OP},2} \\ \vdots & \vdots \\ \boldsymbol{r}_{\text{IP},7} & \boldsymbol{r}_{\text{OP},7} \end{pmatrix} \begin{pmatrix} \boldsymbol{s}_{\text{IP}} \\ \boldsymbol{s}_{\text{OP}} \end{pmatrix} + \boldsymbol{U} \equiv \boldsymbol{R} \begin{pmatrix} \boldsymbol{s}_{\text{IP}} \\ \boldsymbol{s}_{\text{OP}} \end{pmatrix} + \boldsymbol{U}$

 $\begin{pmatrix} S_{IP} \\ S_{OP} \end{pmatrix} = (R^{T}R)^{-1} R^{T}S$ For details of $r_{IP,1-7}$, $r_{OP,1-7}$, and R, see, Itoh et al., JPC A 2009, 113, 7810. Shioya et al., JPC A 2019, 123, 7177.

The IP and OP absorbance spectra: $A_{\rm IP} = -\log_{10} \frac{s_{\rm IP}^s}{s_{\rm ID}^b}$ $A_{\rm OP} = -\log \frac{s_{\rm OP}^s}{s_{\rm OP}^b}$ Superscripts *b* and *s* indicate background and sample measurements.

U is a "garbage matrix". Non-linear noise factors are pooled in *U* as an error term.